আমি একজন সাধারণ মানুষ কিন্তু অসাধারন কিছু স্বপ্ন দেখি।

Google ADD

468x60 banner ad

Powered by Blogger.

Blogroll

Popular

Sosial Media

Consectetuer

Featured Posts

Total Pageviews

Blog Archive

Recent in Sports

Home Ads

Random Posts

Contact Form

Name

Email *

Message *

Followers

Social Icons

Facebook

Comments

Ads

Our sponsors

Internet Trips

Pages

Popular

Monday, January 2, 2017

System Analysis Simplex Method.General LP problem is to find the values



  General LP problem is to find the values of X1,X2,…..Xn which maximizes (or minimizes) the objective function
  Max (or Min) Z= C1X1+C2X2+………CnXn
  While satisfying the constraints
  a11X1+…….a1nXn             ≤b1  or  ≥ b1
  a21X1+…….a2nXn               ≤b2  or  ≥ b2
  ……..
  am1X1+…….amnXn ≤bm or  ≥ bm
  and    X1, ….Xn     ≥0 

……………………………………………………………………………………………………..
  This problem can be put in the canonical form as follows.
  Inequalities can be converted to equalities.
  a11X1+…….a1nXn  ±S1   =b1
  a21X1+…….a2nXn      ±S2 =b2
  ……..
  am1X1+…….amnXn      ±Sm = bm
  ( by adding  a slack or a surplus variable)
……………………………………………………………………………………………..
Minimization or maximization
  Max (min) Z= C1X1+C2X2+………CnXn
 can be converted to a
min (max) Z’=-{ C1X1+C2X2+………CnXn}
 by multiplying the objective function by -1.
…………………………………………………………………………………..
DEFINITIONS
                       Slack variables:
 are defined, when there are  ≤ inequalities.
In the example discussed , the available  capacities of the  three machines M1,M2 and M3 are 40,40 and 40 respectively..
Unused  amounts of the three machines are denoted by X3,X4 and X5.  (They are ≥0.)
Some books denote them by Sj .
……………………………………………………………….
  Surplus variables: 
  re defined when there are ≥ inequalities.
  In the diet planning  problem of the dog,
  The aminimum protein requirements are specified on the r.h.s.. If you feed more,  the dog gets more than what is required.
The excess amount of protein is denoted by Xj or Sj  .(they are ≥ 0) The amount overfed is the surplus variable.
By subtracting that amount we get the equality.
……………………………………………………….
  Non basic variables:
  The variables which have the value zero are called non basic variables.
  Basic variables:
  Variables which  are positive  are called basic variables. However some times the basic variables can have zero values and then the solution is said to be  degenerate .
……………………………………………………………..



  Handling of in-equality Constraints
  Case 1: Slack Variable:
x1+2x2+3 x3 +4x4£25 
l  Modified to
         x1+2x2+3x3+4x4+ x5=25 
         x5³0 is a slack variable.
  Case 2: Surplus Variable:
2 x1+ x2-3 x3³12
l  Modified to
      2 x1+ x2-3 x3- x4=12
      x4³0 is a surplus variable
















Table 1
Basic={5 6 7};Nonbasic={1 2 3 4}


6
10
9
20
0
0
0

CB
Basis
x1
x2
x3
x4
x5
x6
x7
constraints
0
x5
4
9
7
10
1
0
0
600 (600/10=60)
0
x6
1
1
3
8
0
1
0
420(420/8=52.5)
0
x7
30
40
20
10
0
0
1
800(800/10=80)
DZ

6
10
9
20
-
-
-
Z=0

Table 2
Basic={5 4 7};Nonbasic={1 2 3 6}
 

6
10
9
20
0
0
0

CB
Basis
x1
x2
x3
x4
x5
x6
x7
constraints
0
x5
2.75
7.75
3.25
0
1
-1.25
0
75(75/7.75=9.6774)
20
x4
0.125
0.125
0.375
1
0
0.125
0
52.5(52.5/0.125=420)
0
x7
28.75
38.75
16.25
0
0
-1.25
1
275(275/38.5=7.0798)
DZ

3.5
7.5
1.5
-
-
-2.5
-
Z=1050

Table 3
Basic={5 4 2};Nonbasic={1 7 3 6}
 

6
10
9
20
0
0
0

CB
Basis
x1
x2
x3
x4
x5
x6
x7
constraints
0
x5
-3
0
0
0
1
-1
-0.2
20
20
x4
0.0323
0
0.3226
1
0
0.129
-0.0032
51.6129
10
x2
0.7419
1
0.4194
0
0
-0.0323
0.0258
7.0968
DZ

-2.0645
-
-0.1935
-
-
-1.6452
-2.2581
Z=1103.226
Ø 5x1+10x2<=60
Ø 4x1+4x2<=40
X1, X2 >=0
Z=6x1+8x2
Ø 5x1+10x2 + S1 = 60
Ø 4x1+4x2 + S2 = 40
X1, X2, S1, S2 >=0
PIVOT COLUMN
operation
basis
X1
X2
S1
S2
value
ratio
Cbi
Cj
6
8
0
0


0
S1
5
10
1
0
60
60/10=6
0
S2
4
4
0
1
40
40/4=10

Zj
0
0
0
0
0


Cj-Zj
6
8
0
0



PIVOT COLUMN
operation
basis
X1
X2
S1
S2
value
ratio
Cbi
Cj
6
8
0
0


8
X2
1/2
1
1/10
0
6
6(1/2)=6
0
S2
2
0
-2/5
1
16
16/2=8

Zj
4
8
4/5
0
48


Cj-Zj
2
0
-4/5
0


PIVOT COLUMN
operation
basis
X1
X2
S1
S2
value
ratio
Cbi
Cj
6
8
0
0


8
X2
0
1
1/5
-1/4
2

6
X1
1
0
-1/5
1/2
8


Zj
6
8
2/5
1
64


Cj-Zj
0
0
-2/5
-1



No comments:

Post a Comment